17 research outputs found

    Nonlinear Dynamics of Phased Array Levitators

    Get PDF

    Acoustic Hologram Optimisation Using Automatic Differentiation

    Full text link
    Acoustic holograms are the keystone of modern acoustics. It encodes three-dimensional acoustic fields in two dimensions, and its quality determine the performance of acoustic systems. Optimisation methods that control only the phase of an acoustic wave are considered inferior to methods that control both the amplitude and phase of the wave. In this paper, we present Diff-PAT, an acoustic hologram optimisation algorithm with automatic differentiation. We demonstrate that our method achieves superior accuracy than conventional methods. The performance of Diff-PAT was evaluated by randomly generating 1000 sets of up to 32 control points for single-sided arrays and single-axis arrays. The improved acoustic hologram can be used in wide range of applications of PATs without introducing any changes to existing systems that control the PATs. In addition, we applied Diff-PAT to acoustic metamaterial and achieved an >8 dB increase in the peak noise-to-signal ratio of acoustic hologram.Comment: 25 pages, 5 figures, manuscrip

    Dance Generation by Sound Symbolic Words

    Full text link
    This study introduces a novel approach to generate dance motions using onomatopoeia as input, with the aim of enhancing creativity and diversity in dance generation. Unlike text and music, onomatopoeia conveys rhythm and meaning through abstract word expressions without constraints on expression and without need for specialized knowledge. We adapt the AI Choreographer framework and employ the Sakamoto system, a feature extraction method for onomatopoeia focusing on phonemes and syllables. Additionally, we present a new dataset of 40 onomatopoeia-dance motion pairs collected through a user survey. Our results demonstrate that the proposed method enables more intuitive dance generation and can create dance motions using sound-symbolic words from a variety of languages, including those without onomatopoeia. This highlights the potential for diverse dance creation across different languages and cultures, accessible to a wider audience. Qualitative samples from our model can be found at: https://sites.google.com/view/onomatopoeia-dance/home/

    Acoustophoretic volumetric displays using a fast-moving levitated particle

    Get PDF
    Displays have revolutionized the way we work and learn, and thus, the development of display technologies is of paramount importance. The possibility of a free-space display in which 3D graphics can be viewed from 360° without obstructions is an active area of research - holograms or lightfield displays can realize such a display, but they suffer from clipping and a limited field of view. Here, we use a phased array of ultrasonic emitters to realize a volumetric acoustophoretic display in which a millimetric particle is held in midair using acoustic radiation forces and moved rapidly along a 3D path. Synchronously, a light source illuminates the particle with the target color at each 3D position. We show that it is possible to render simple figures in real time (10 frames per second) as well as raster images at a lower frame rate. Additionally, we explore the dynamics of a fast-moving particle inside a phased-array levitator and identify potential sources of degradation in image quality. The dynamics are nonlinear and lead to distortion in the displayed images, and this distortion increases with drawing speed. The created acoustophoretic display shows promise as a future form of display technology.T.F. was funded through the Japan Student Services Organization (JASSO) Student Exchange Support Program (Graduate Scholarship for Degree Seeking Students). This project was funded by the UK Engineering and Physical Science Research Council (No. EP/N014197/1)

    3D study of the vibrational behaviour of lithic flint blades

    No full text
    Stone Age sites are well known to often contain many lithic flint blades and flakes, which may provide important information about early European Stone Age cultures and their environment. Understanding the mechanical behaviour of lithic flint blades represents an important problem for scientists in general and archaeologists in particular. In this study, the structural behaviour of lithic flint blades is studied. Ten specimens with different geometric shapes (tilted, curved, with bumping surfaces) were studied and tested. Their natural frequencies, damping ratios, and mode shapes (that is how the specimen deforms under any external excitation) are estimated using two models: an analytical model that accounts for the specimen's curvature and a 3D Finite Element (FE) method. Advanced experimental methods, including ultrasound techniques, were used to measure the mechanical properties of the specimens. The experimental set-up was built around a laser vibrometer that measured the specimen's displacement. The model predictions were compared with the experimental data to validate their effectiveness. A good agreement is observed between the models and the real data. It is particularly observed that despite their complicated geometries, the specimens still follow a structured pattern in their dynamic response. The presented study supports the use of acoustic methods as an effective tool to characterize and detect submerged prehistoric materials. This work contributes to the dynamic characterization of submerged Stone Age materials

    Data for "Nonlinear Trapping Stiffness of Mid-Air Single-Axis Acoustic Levitators"

    Get PDF
    <p>Data associated with the manuscript entitled "Nonlinear Trapping Stiffness of Mid-Air Single-Axis Acoustic Levitators".</p
    corecore